

CS 193A

Activity state and preferences

This document is copyright (C) Marty Stepp and Stanford Computer Science.
Licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Barbara Hecker

Activity instance state

● instance state: Current state of an activity.
– Which boxes are checked

– Any text typed into text boxes

– Values of any private fields

– ...

● Example: In the app at right, the
instance state is that the
Don checkbox is checked, and the
Don image is showing.

Lost activity state

● Several actions can cause your activity state to be lost:
– When you go from one activity to another and back, within same app

– When you launch another app and then come back

– When you rotate the device's orientation from portrait to landscape

– ...

Simulating state change in AVD

● Testing orientation change: press Ctrl-F11 (link)
● Testing activity shutdown (onDestroy):

– Settings → Developer options → Don't keep activities

– Developer options → Background process limit → No bg processes

http://developer.android.com/tools/help/emulator.html

Handling rotation

● A quick way to retain your activity's GUI state on rotation is to
set the configChanges attribute of the activity in
AndroidManifest.xml.
– This doesn't solve the other cases like loading other apps/activities.

<activity android:name=".MainActivity"
 android:configChanges="orientation|screenSize"
 ...>

onSaveInstanceStace method

● When an activity is being destroyed, the event method
onSaveInstanceState is also called.
– This method should save any "non-persistent" state of the app.

– non-persistent state: Stays for now, but lost on shutdown/reboot.

● Accepts a Bundle parameter storing key/value pairs.
– Bundle is passed back to activity if it is recreated later.

public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState); // always call super
 outState.putInt("name", value);
 outState.putString("name", value);
 ...
}

onRestoreInstanceStace method

● When an activity is recreated later, the event method
onRestoreInstanceState is called. *
– This method can restore any "non-persistent" state of the app.

– Bundle from onSaveInstanceState from before is passed back in.
● * older versions of Android put this code in onCreate; don't do that any more

public void onRestoreInstanceState(Bundle inState) {
 super.onRestoreInstanceState(inState); // always call super
 int name = inState.getInt("name");
 String name = inState.getString("name");
 ...
}

Saving your own classes

● By default, your own classes can't be put into a Bundle.
● You can make a class able to be saved by implementing the

(methodless) java.io.Serializable interface.

public class Date implements Serializable {
 ...
}

public class MainActivity extends Activity {
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 Date d = new Date(2015, 1, 25);
 outState.putSerializable("today", d);
 }
}

Preferences

● SharedPreferences object can store permanent settings and data
for your app.
– stores key/value pairs similar to a Bundle or Intent

– pairs added to SharedPreferences persist after shutdown/reboot
(unlike savedInstanceState bundles)

● Two ways to use it:
– per-activity (getPreferences)

– per-app (getSharedPreferences)

SharedPreferences example

● Saving preferences for the activity (in onPause, onStop):
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 SharedPreferences.Editor prefsEditor = prefs.edit();
 prefsEditor.putInt("name", value);
 prefsEditor.putString("name", value);
 ...
 prefsEditor.apply(); // or commit();

● Loading preferences later (e.g. in onCreate):
 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 int i = prefs.getInt("name", defaultValue);
 String s = prefs.getString("name", "defaultValue");
 ...

Multiple preference files

● You can call getSharedPreferences and supply a file name if
you want to have multiple pref. files for the same activity:

 SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 SharedPreferences prefs = getSharedPreferences(
 "filename", MODE_PRIVATE);
 SharedPreferences.Editor prefsEditor = prefs.edit();
 prefsEditor.putInt("name", value);
 prefsEditor.putString("name", value);
 ...
 prefsEditor.commit();

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

