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Activity instance state

● instance state: Current state of an activity.
– Which boxes are checked

– Any text typed into text boxes

– Values of any private fields

– ...

● Example: In the app at right, the
instance state is that the
Don checkbox is checked, and the
Don image is showing.



Lost activity state

● Several actions can cause your activity state to be lost:
– When you go from one activity to another and back, within same app

– When you launch another app and then come back

– When you rotate the device's orientation from portrait to landscape

– ...



Simulating state change in AVD

● Testing orientation change: press Ctrl-F11  (link)
● Testing activity shutdown (onDestroy):

– Settings → Developer options → Don't keep activities

– Developer options → Background process limit → No bg processes

http://developer.android.com/tools/help/emulator.html


Handling rotation

● A quick way to retain your activity's GUI state on rotation is to 
set the configChanges attribute of the activity in 
AndroidManifest.xml.
– This doesn't solve the other cases like loading other apps/activities.

<activity android:name=".MainActivity"
    android:configChanges="orientation|screenSize"
    ...>



onSaveInstanceStace method

● When an activity is being destroyed, the event method 
onSaveInstanceState is also called.
– This method should save any "non-persistent" state of the app.

– non-persistent state: Stays for now, but lost on shutdown/reboot.

● Accepts a Bundle parameter storing key/value pairs.
– Bundle is passed back to activity if it is recreated later.

public void onSaveInstanceState(Bundle outState) {
    super.onSaveInstanceState(outState);  // always call super
    outState.putInt("name", value);
    outState.putString("name", value);
    ...
}



onRestoreInstanceStace method

● When an activity is recreated later, the event method 
onRestoreInstanceState is called. *
– This method can restore any "non-persistent" state of the app.

– Bundle from onSaveInstanceState from before is passed back in.
● * older versions of Android put this code in onCreate;  don't do that any more

public void onRestoreInstanceState(Bundle inState) {
    super.onRestoreInstanceState(inState);  // always call super
    int name = inState.getInt("name");
    String name = inState.getString("name");
    ...
}



Saving your own classes

● By default, your own classes can't be put into a Bundle.
● You can make a class able to be saved by implementing the 

(methodless)  java.io.Serializable interface.

public class Date implements Serializable {
     ...
}

public class MainActivity extends Activity {
    public void onSaveInstanceState(Bundle outState) {
        super.onSaveInstanceState(outState);
        Date d = new Date(2015, 1, 25);
        outState.putSerializable("today", d);
    }
}



Preferences

● SharedPreferences object can store permanent settings and data 
for your app.
– stores key/value pairs similar to a Bundle or Intent

– pairs added to SharedPreferences persist after shutdown/reboot
(unlike savedInstanceState bundles)

● Two ways to use it:
– per-activity (getPreferences)

– per-app (getSharedPreferences)



SharedPreferences example

● Saving preferences for the activity (in onPause, onStop):
  SharedPreferences prefs = getPreferences(MODE_PRIVATE);
  SharedPreferences.Editor prefsEditor = prefs.edit();
  prefsEditor.putInt("name", value);
  prefsEditor.putString("name", value);
  ...
  prefsEditor.apply();   // or commit();

● Loading preferences later (e.g. in onCreate):
  SharedPreferences prefs = getPreferences(MODE_PRIVATE);
  int i = prefs.getInt("name", defaultValue);
  String s = prefs.getString("name", "defaultValue");
  ...



Multiple preference files

● You can call getSharedPreferences and supply a file name if 
you want to have multiple pref. files for the same activity:

  SharedPreferences prefs = getPreferences(MODE_PRIVATE);
  SharedPreferences prefs = getSharedPreferences(
          "filename", MODE_PRIVATE);
  SharedPreferences.Editor prefsEditor = prefs.edit();
  prefsEditor.putInt("name", value);
  prefsEditor.putString("name", value);
  ...
  prefsEditor.commit();
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